Уравнение - это самая простая и самая распространенная форма математической задачи. Возьмем два числовых выражения и поставим между ними знак равенства. Мы получим числовое равенство. Оно будет верным или неверным в зависимости от того, равны или не равны значения взятых числовых выражений. Классическими примерами являются равенства 2 ·2 =4 и 2 ·2 =5
Решить уравнение - это значит найти все его корни или убедиться, что корней нет. Например, установим, является ли уравнением с одним неизвестным выражение m+0=m. Рассматриваемое выражение представляет собой равенство, содержащее обозначенное буквойm неизвестное число. Если требуется найти это неизвестное число, то рассматриваемое утверждение является уравнением. Если же рассматривать это выражение как запись того, что прибавление к любому числу числа 0 дает сумму, равную первоначальному числу, то утверждение не является уравнением. У уравнения m+0=m сколько угодно решений: любое число m является его решением.
У уравнения a+3=4+a нет решений. У уравнения a+3=4 одно решение: a=1 [1]
Если требуется решить уравнение, то надо найти все его корни или доказать, что корней нет. Отметим, что когда мы говорим "равенство двух числовых выражений", мы вовсе не утверждаем, что эти два выражения действительно равны. Соединить два числовых выраженияА и В знаком "=" и говорить о получившемся равенстве А=В можно независимо от того, верно или неверно сформулированное нами утверждение "А=В".
Возьмем два буквенных выражения и соединим их знаком равенства. Получим уравнение. Таким образом, уравнение в первом приближении можно понимать как равенство двух буквенных выражений.
Равенство числовых выражений иногда называют безусловным равенством, т.е. равенством безусловно верным, или безусловно неверным. Уравнение с этой точки зрения можно считать условным равенством - при одних условиях (т.е. при одних значениях букв) оно может оказаться верным, при других - неверным. Тождество - это равенство, при всех допустимых значениях букв. Его тоже можно считать частным случаем уравнения. [2]
Уравнения - это не просто формальное равенство двух выражений. Главное в понятии уравнения - это постановка вопроса о его решении. Следовательно, уравнение - это равенство двух выражений вместе с призывом найти его решение. Что же значит решить уравнение?
Буквы, входящие в состав уравнения (т.е. в состав выражений, образующих уравнение), называются неизвестными. Если такая буква одна, то говорят, что мы имеем дело с уравнением с одним неизвестным. Значение неизвестного, при подстановке которого уравнение превращается в верное числовое равенство, называется корнем уравнения. Решить уравнение с одним неизвестным, значит найти все его корни. Полезно помнить, что подставлять в уравнение можно любое значение х. При каком-то значении х может получиться бессмысленное числовое выражение, а при х из области допустимых значений получится осмысленное числовое равенство. Если при этом оно окажется еще и верным, то взятое число х является корнем уравнения. Уравнение может иметь один корень, например, х=5.Все корни (решения) уравнения образуют множество корней. Слово множество не означает, что корней очень много (великое множество). Если множество корней обозначить одной буквой, например х, то ответ может быть записан иначе. Примеры записей ответов с употреблением теоретиком множественных обозначений: x ={5} [2]
Способы решения уравнений.
В курсе математики начальных классов уравнение рассматривается как истинное равенство, содержащее неизвестное число.
Термин решение употребляется в двух случаях: он обозначает так число (корень), при подготовке которого уравнение обращается в верное числовое равенство, так и сам процесс отыскания такого числа, т.е. способ решения уравнения. В данной работе для нас важнее второе толкование этого термина, поэтому рассмотрим некоторые способы решения уравнений более подробно.
Способы решений уравнений могут быть различными, желательно, чтобы учащиеся овладели их разнообразием. Выделяют следующие способы решения уравнений: способ, основанный на подборе значений переменной, способ, основанный на знании состава чисел, способы основанные на зависимостях между компонентами и результатами действий, графический способ, способы, основанные на разностном и кратном отношении чисел. Рассмотрим некоторые из них более подробно.